第35 卷 第1期 2013年2月

doi: 10.7522/j.issn.1000-0240.2013.0008

He Yongqi, Huang Xiaodong, Fang Jin, *et al.* Snow cover mapping algorithm based on HJ-1B satellite data [J]. Journal of Glaciology and Geocryology, 2013, 35(1): 65-73. [何咏琪, 黄晓东, 方金, 等. 基于 HJ-1B 卫星数据的积雪面积制图算法研究[J]. 冰川冻土, 2013, 35(1): 65-73.]

基于 HJ-1B 卫星数据的积雪面积制图算法研究

「何咏琪¹,黄晓东^{1*},方 \pounds^1 ,王 \hbar^1 ,郝晓华²,梁天刚¹

(1. 兰州大学 草地农业科技学院 草地农业生态系统国家重点实验室,甘肃 兰州 730020;2. 中国科学院 寒区旱区环境与工程研究所,甘肃 兰州 730000)

摘 要: 积雪是影响气候变化的重要因子,采用更高时空分辨率的环境减灾卫星遥感数据进行积雪制 图算法的研究,对推进我国自主遥感卫星在积雪监测领域的应用具有重要意义.采用环境减灾 HJ-1B 卫星数据,以青海省果洛藏族自治州达日县为研究区,应用归一化差值积雪指数(NDSI)法建立了基于 HJ-1B 卫星数据的积雪面积制图算法,并比较 MODIS 与 HJ-1B 积雪图精度.结果表明:研究区 HJ-1B 积雪制图合理的 NDSI 阈值为 0.37,总分类精度达到 97.97%;与"真值"影像比较,HJ-1B 积雪图 K_{hat} 系数为 0.911,高于 MODIS 的 0.817.说明该研究建立的基于 HJ-1B 积雪制图算法精度可靠,适合对 研究区积雪进行实时动态监测.HJ-1B 更高的空间分辨率对提高研究区积雪覆盖面积监测精度具有重 要的使用价值,但是地形因素是影响 HJ-1B 数据积雪分类精度的一个重要原因,随着坡度的增加,分 类误差也随之增大,尤其是多测误差增加比较显著. 关键词:HJ-1B; NDSI; 积雪制图;达日县

中图分类号: P426.63⁺5 文献标识码: A

0 引言

积雪是地表覆盖的重要组成部分,是地球表面 最为活跃的自然要素之一,也是全球能量平衡、气 候、水文以及生态模型中的重要输入参数^[1].在冬 季,北半球积雪覆盖面积可达5 000×10⁴ km²,约 占地表总面积的 34^{%[2]},尤其在南、北半球的高纬 度和高海拔地区,大范围的地表被积雪覆盖^[3].积 雪覆盖面积的动态变化状况对水体和能量循环以及 社会经济和生态环境均具有重大的影响,积雪融水 也是干旱、半干旱地区生态系统的重要水源,与农 牧业有着密切的关系^[4-6].因此,提高积雪制图精 度,完善积雪监测系统,建立准确和长期的积雪产 品数据库对模拟融雪径流过程、研究积雪对气候的 反馈作用及影响等具有重要的意义.

利用遥感技术进行积雪制图和监测已有 40 多 年的研究历史,同时也发展了一系列的积雪制图算 法及产品,如 Landsat 和 SPOT^[7]、AVHRR^[8]、 VEGETATION^[9-11]、 MODIS 积雪产品^[12]及 SMMR、SSM/ $I^{[13-14]}$ 和 AMSR- $E^{[15-16]}$ 等微波积雪 产品,在积雪动态变化监测等领域取得了一系列的 成果.其中, NOAA/ AVHRR 和 NASA/ MODIS 是在积雪面积监测领域中应用最为广泛的两个光学 传感器[17], 随着卫星谣感技术的发展, 国内外学者 对积雪遥感的大量研究,目前形成的积雪提取方法 主要包括归一化差分积雪指数(Normalized Difference Snow Index, NDSI)法、多时相合成法和概 率积雪判识法等^[18-20]. 王建^[21]利用 NOAA-AVHRR、Landsat-TM 和 MODIS 三个传感器的遥 感数据,研究了多种积雪制图方法,发现不同传感 器由于时相及空间分辨率的差异,提取积雪信息的 有效方法有所不同,同时总结出运用积雪指数法提 取积雪信息是一种最佳的技术手段. 虽然 MODIS 500 m 分辨率的积雪面积产品能够提供全球的积雪

收稿日期: 2012-08-11; 修订日期: 2012-11-25

基金项目:国家自然科学基金项目(41101337;31228021;41001197);西部博士资助项目(29Y128861)资助

作者简介:何咏琪(1989—),女,甘肃庆城人,2011 年毕业于兰州大学,现为兰州大学在读硕士研究生,主要从事积雪遥感的研究. E-mail: heyq11@lzu.cn

^{*} 通讯作者: 黄晓东, E-mail: huangxd@lzu.edu.cn

±

分布信息,但对于流域尺度研究,这样的数据仍然 很难满足对积雪覆盖面积精度的要求. 我国于 2008 年9月6日,通过一箭双星的方式成功发射了环境 减灾卫星 HJ-1A/1B 卫星,两颗卫星上总共搭载了 3种主要载荷.其中,HJ-1A 星搭载两台 CCD 相 机^[22]和一台超光谱成像仪(HSI),HJ-1B 星搭载两 台 CCD 相机和一台红外相机(IRS)^[23].其中,可见 光波段的空间分辨率为 30 m,近红外波段的空间 分辨率为 150 m(1 个热红外波段为 300 m). 较目 前常用的积雪监测卫星而言,HJ-1B卫星在空间和 时间分辨率上都有明显的优势, 它能以一种比较高 的时空分辨率对全球的积雪进行重复观测,能够满 足区域性尺度的积雪监测.目前,利用国产环境减 灾卫星在积雪制图方面仍处在探索阶段,还需要进 一步研究. 国家减灾中心利用环境减灾卫星热红外 通道反演的亮度温度,结合红外相机近红外波段反 射特性开展进行云、雪和其他地物分离,提取出积 雪覆盖范围[24],但缺乏验证研究及相关产品的研 发. 宋珍等^[25]将 NDSI 引入到 HJ-1A/1B 卫星中, 得到了基于 CCD 和 IRS 两个传感器数据的 HJ-NDSI 积雪识别方法.为了避免由于幅宽、扫描区 域等因素的差异引起的两种不同传感器同时相数据 难获取的问题,对HJ-NDSI方法进行了改进,提出 了一种仅利用 IRS 传感器数据的 HJ-MNDSI 积雪 识别方法,并对两种积雪识别方法得到的结果进行 了验证,结果表明两种方法积雪识别精度都在 95 % 左右^[25].我国西部山区有丰富的积雪资源,由于山 区地形错综复杂,空间破碎化比较严重,山区积雪 监测是全球积雪监测中的难题^[26].借鉴当前已经 成熟的积雪分类算法,探讨基于环境减灾卫星且适 合我国雪情的积雪遥感监测方法,对推进我国自主 研发卫星在积雪遥感领域的应用具有重要作用.

本文以环境减灾卫星为数据源,以我国西部山 区为研究区域,分析了 HJ-1B 卫星各传感器的波段 特点,运用归一化差值积雪指数法,提取研究区 NDSI 合理阈值,建立适合我国西部山区的基于 HJ-1B 卫星数据的积雪面积制图的算法,提高山区 积雪面积制图精度,获取更加准确的我国西部山区 环境减灾卫星积雪数据集.

1 研究区与数据介绍

1.1 研究区概况

我国西部山区有丰富的积雪资源,北疆地区、 青藏高原和内蒙古高原是我国三大积雪分布中 心^[27].特别是分布于青藏交接处唐古拉山南坡的 西藏那曲地区、北坡的青海玉树和果洛州、新疆阿 尔泰山南坡的阿勒泰,都是主要积雪分布区^[28-29].

本文选取青海省果洛藏族自治州达日县为研究 区(图1),其地处青藏高原腹地,黄河源头,位于 青海省的东南部,平均海拔在4 200 m. 该地区降 雪量大,雪灾频繁发生,造成大量的人畜死亡,破 坏交通和通讯设备,引起很大经济损失,已经成为 该地区主要的重大自然灾害之一^[30-31].由于这里 山势高耸,地形错综复杂,云雾弥漫,人烟稀少, 传统的地面台站观测受到极大限制,采用卫星遥感 观测对该地区积雪监测具有重要意义.

1.2 研究数据

1.2.1 数据介绍

环境与灾害监测预报小卫星 HJ-1A 卫星和 HJ-1B 卫星上均装载的两台 CCD 相机,设计原理 完全相同,以星下点对称放置,平分视场、并行观 测,联合完成对地划幅宽度为 700 km、地面像元分 辨率为 30 m 的 4 个谱段的推扫成像.此外,在 HJ-1B 卫星上还装载有一台红外相机(IRS),完成对 地幅宽为 720 km、地面像元分辨率为 150 m/300 m、近短中长 4 个光谱谱段的成像.相对于千米级 分辨率的中分辩率成像光谱仪 MODIS 和风云 (FY)卫星数据,较高的空间分辨率以及热红外、中 红外和近红外合理的通道设置对于积雪判识有重要 意义.本研究采用 HJ-1B 卫星 CCD 和 IRS 两个传 感器提供的数据研究积雪判识的方法,过境时间为 2009 年 12 月 6 日,研究区的数据均是晴朗基本无 云的天气下获得的,因此不考虑云的影响.

MODIS 是搭载在 NASA 的 EOS(Earth Ob-

何咏琪等:基于 HJ-1B 卫星数据的积雪面积制图算法研究

servation System) Terra 卫星和 Aqua 卫星上的中 分辨率成像光谱仪,有 36 个波段,波长范围从 0.40 μm 到 14.0 μm. 其具有高光谱分辨率和高时 间分辨率,被广泛应用于积雪监测中^[30-33].从 EOS 门户网站下载与 HJ-1B 同期的 MODIS 标准 逐日积雪产品 MOD10A1,空间分辨率为 500 m.

1.2.2 数据预处理

HJ-1B 星上载有两台 CCD 相机,一台红外相 机(IRS),空间分辨率分别为 30 m 和 150 m.对 CCD 可见光波段,使用绝对定标系数^[34]将 HJ-1B 的反射波段 DN 值转换为大气顶层的表观反射率, 其公式为:

$$\rho_{i} = \frac{\pi \times (offset_{i} + DN/gain_{i}) \times d^{2}}{esun_{i} \times \cos(\theta)}$$
(1)

式中: ρ_i 为第*i* 波段大气顶层的表观反射率;*d* 为日 地距离;*esun_i*为第*i* 波段太阳平均辐射强度; θ 为 太阳天顶角; *gain_i*和 *offset_i*分别为第*i* 波段的增 益和偏移.

对于红外波段,根据式(2)计算辐亮度:

$$l_{i} = \frac{DN - radiance_offset_{i}}{radiance_gain_{i}}$$
(2)

式中: l_i 为第 i 波段的辐亮度; radiance_gain; 和 radiance_of f set; 分别为对应波段的增益和偏移.

采用 ENVI 中的 FLAASH 大气校正工具,将 定标后的数据经过大气校正得到地表反射率值. 经 过辐射校正和大气校正之后,以空间分辨率 150 m 的 IRS 数据为参考影像,将同时相的 CCD 影像与 其配准,并对 IRS 数据重采样,将空间分辨率统一 到 30 m.

2 研究方法

2.1 HJ-1B 卫星积雪判别方法

HJ-1B 卫星高空间和时间分辨率对于积雪面积 监测具有明显优势,其在可见光和近红外波段合理 的通道设置很好地解决了积雪监测时传感器饱和的 问题.由于 HJ-1B 扫描宽度为 720 km,覆盖范围 很广,因此更适合较大尺度范围积雪面积的监测. HJ-1B 卫星用于提取积雪信息的几个重要波段的信 息如表 1 所示.

积雪同其他的地表覆盖物相比,在可见光波段 (Visible Band)具有较高的反射率,而在短波红外 波段(Short-wave Infrared Band)具有较低的反射 率,NDSI就是利用积雪的这一特征发展而来的. 因此,本研究计算 NDSI 是将 HJ-1B 卫星 CCD 第 2

表 1 HJ-1B 传感器在积雪遥感监测的光谱通道和特征

 Table 1
 Band information of HJ-1B sensors

 in snow cover monitoring

111	SHOW	cover	monitoring	

传感器	通道/CH	波普/ μm	空间分辨率 /m	类型
CCD	2	0.52~0.60	30	可见光(绿)
CCD	4	0.76~0.90	30	可见光(红)
IRS	1	0.75~1.10	150	近红外
IRS	2	1.55~1.75	150	近红外

波段($0.52 \sim 0.60 \mu$ m)和 IRS 第 2 波段($1.55 \sim$ 1.75 μ m)的反射率进行归一化差值处理.为了提高 积雪识别率,排除云的影响,利用云在短波红外波 段($1.6 \sim 2.0 \mu$ m)表现出了较高的反射率,而雪的 反射率很低,由此可以区分云雪^[35-36].为了消除水 体的干扰,设定 HJ-1B 卫星 CCD 第 4 波段的反射 率>11%.同时,由于 HJ-1B 图像中对一些暗色物 体 NDSI 的变化不明显,可能会被识别成积雪,因 此还要补充 HJ-1B 卫星 CCD 第 2 波段的反射率> 10%这一判别条件^[37],其计算方法如下:

$$NDSI = \frac{b2_{\rm CCD} - b2_{\rm IRS}}{b_{2\,\rm CCD} + b_{2\,\rm IRS}} \tag{3}$$

$$NDSI > t$$
 (4)

$$b2_{\rm CCD} > 0.10$$
 (5)

$$b4_{CCD} > 0.11$$
 (6)

式中: *t* 为积雪判别阈值; *b*2_{CCD}和 *b*2_{IRS}分别为可见 光波段和短波红外波段的反射率,其空间分辨率为 30 m. 利用 ENVI 决策树分类方法计算得到不同阈 值 30 m 分辨率的积雪面积二值图像,雪像元赋值 为 1,非雪像元赋值为 0.

2.2 HJ-1B 卫星积雪判别阈值确定

在 NSIDC (National Snow and Ice Data Center)发布的 MODIS 全球积雪面积产品中,通用的 NDSI 阈值为 0. 40^[38].本研究采用 HJ-1B 卫星遥 感数据,由于卫星高度、传感器波段等差异,因此 NDSI 阈值也应该有所差异.采用 NDSI 阈值从 0. 30~0. 50,以 0. 01 为步长逐渐增大的方法,分别 制作积雪面积图.由于 HJ-1B 卫星 CCD 为 30 m 分 辨率,能够真实反映地面积雪情况.因此,将结合 实地观测数据进行目视解译的影像作为积雪覆盖 "真值"图像(图 2),比较不同 NDSI 阈值条件下的 积雪分类图与"真值"影像.利用 ArcGIS 中 TabulateArea 工具比较分析不同 NDSI 阈值条件下的积 雪分类图像精度,提取最接近真实值的 HJ-1B 卫星 积雪图中的 NDSI 阈值.

本研究采用的积雪分类精度评价方法依据漏测 误差 L(%)、多测误差 M(%)、分类总精度 O(%)和 积雪分类精度 S(%) 4 个指标,其计算公式如下:

$$L = \frac{S_{\rm N}}{S_{\rm S} + S_{\rm N}} \times 100 \tag{7}$$

$$D = \frac{N_{\rm s}}{N_{\rm N} + N_{\rm s}} \times 100 \tag{8}$$

$$O = \frac{S_{\rm s} + N_{\rm N}}{S_{\rm s} + S_{\rm N} + N_{\rm N} + N_{\rm s}} \times 100$$
(9)

$$S = \frac{S_{\rm s}}{S_{\rm s} + S_{\rm N}} \times 100 \tag{10}$$

式中: S_s 为"真值"影像和卫星资料均有雪的像元 数; S_N 为"真值"影像有雪而分类积雪图像为无雪类 型的像元数,即为漏测误差; N_N 为"真值"影像和卫 星资料均无雪的像元数; N_s 为"真值"影像无雪而分 类积雪图像有雪的像元数,即为多测误差.

2.3 HJ-1B 与 MODIS 积雪图产品对比分析

MODIS 全球积雪面积产品的精度已经在全球 范围内得到验证.结果表明,在晴空状态下,MO-DIS 两种逐日积雪产品的积雪识别总体精度都达到 90%以上,其中在青藏高原地区的分类精度达到 94.6%^[39-42].将 MODIS 积雪图与 HJ-1B 卫星积 雪图分别与"真值"积雪图进行比较,并通过分层随 机采样的方式选择 200 个采样点,计算积雪图精度 及 K_{hat} 一致性系数.利用式(7)~(10)计算二者总 体分类一致性,利用 SPSS 统计分析软件对采样点 计算 K_{hat} 一致性系数. K_{hat} 是 Kappa 分析生成的一 个统计量,它是 Kappa 的一个估计值,也是遥感分 类图和参考数据之间的一致性或精度的量度,是目 前常用的精度评价标准之一^[43-44]. K_{hat} 的计算公式 如下:

$$K_{\text{hat}} = \frac{N \sum_{i=1}^{k} x_i - \sum_{i=1}^{k} (x_{i+} \times x_{+i})}{N^2 - \sum_{i=1}^{k} (x_{i+} \times x_{+i})}$$
(11)

式中: k 为矩阵行数; N 为所有采样点的总数; x_{ii} 为位于第 i 行第 i 列的采样点个数; x_{i+} 和 x_{+i} 分别 为第 i 行和第 i 列的和. $K_{hat} > 0.80$ 表示分类图和 参考图之间的一致性很大或精度很高, $K_{hat} = 0.40$ ~0.80表示一致性中等, $K_{hat} < 0.40$ 表示一致性很 差^[45].

3 结果与分析

3.1 HJ-1B 卫星积雪判别阈值确定

本研究通过改变 NDSI 阈值,使其从 0.30~ 0.50 以 0.01 为步长逐渐增大,将所得到的积雪分 类图像与地面实测数据结合目视判别得到的"真值" 比较分析,得到不同 NDSI 阈值条件下的 HJ-1B 卫 星积雪分类图像精度如表 2.

表 2 不同 NDSI 阈值条件下的 HJ-1B 卫星 积雪分类图像精度

Table 2 The accuracies of HJ-1B satellite snow cover map with different NDSI thresholds

	漏测误差	多测误差	总精度	积雪分类
NDSI 则1且	/ 1/0	/ %	/ %	精度/%
0.3	0.7667	0.0901	93.4840	99.2333
0.31	1.0283	0.0745	94.4967	98.9717
0.32	1.2133	0.0667	94.9837	98.7867
0.33	2.0878	0.0438	96.3140	97.9122
0.34	2.5569	0.0367	96.6696	97.4431
0.35	3.1561	0.0299	96.9597	96.8439
0.36	3.9977	0.0146	97.7740	96.0023
0.37	4.1047	0.0113	97.9666	95.8953
0.38	4.8191	0.0106	97.8017	95.1809
0.39	5.7470	0.0101	97.5653	94.2530
0.4	6.4776	0.0101	97.3915	93.5224
0.41	7.4004	0.0089	97.1409	92.5996
0.42	9.0264	0.0055	96.8793	90.9736
0.43	10.8928	0.0031	96.4848	89.1072
0.44	13.0266	0.0015	95.9517	86.9734
0.45	15.3309	0.0005	95.3191	84.6691
0.46	17.8405	0.0002	94.5856	82.1595
0.47	20.4419	0.0001	93.8052	79.5581
0.48	21.7201	0.0000	93.4189	78.2799
0.49	23.1450	0.0000	92.9876	76.8550
0.5	25.9223	0.0000	92.1463	74.0777

结果显示,对于同一幅影像,当 b2_{CCD}>0.10, b4_{CCD}>0.11 时,随着 NDSI 阈值逐渐增大,漏测误 差逐渐增大,多测误差逐渐减小,分类总精度呈现 先增大后减小的趋势.其中,在 NDSI 阈值为 0.37 时分类总精度达到最大,为 97.97%,而积雪分类 精度随着阈值的增加呈逐渐减小的趋势.试验证 明,NDSI 阈值越大,识别的积雪像元数越少,漏测 积雪像元数逐渐增多,而多测积雪像元数减少.当 NDSI 阈值<0.35 时,>0.03%的非雪像元被误判 为有雪;而当 NDSI 阈值>0.43 时,>11%的有雪 像元不能被准确识别出来.因此,合理的 NDSI 阈 值范围为 0. 35~0. 43,超出这个范围,影像积雪分 类出现较大偏差.本文通过比较,发现当分类总精 度在 NDSI 阈值为 0. 37 时达到最大,此时漏测误 差为 4. 10%,多测误差仅为 0. 01%,积雪分类精度 为 95. 89%.

3.2 HJ-1B 卫星积雪图误差分析

为了分析 HJ-1B 卫星积雪图分类误差的空间 分布特征,采用 HJ-1B 卫星积雪图与"真值"影像积 雪图做差值,得到两者差值分布图与数字高程模型 生成的坡度图和坡向图作对比(图 3),分析结果如 图 4.

图 3 2009 年 12 与 6 日 HJ-1B 卫星及"真值"积雪图差值分布图 注:漏测"一1"代表 HJ-1B 卫星积雪分类图为无雪,真值图为有雪;一致"0"代表两图均有雪或无雪; 多测"1"代表 HJ-1B 卫星积雪分类图为有雪,真值图为无雪

Fig. 3 Plot of difference between HJ-1B snow cover map and " true value" on Dec 6th, 2009

结果显示,HJ-1B 卫星积雪图与"真值"影像积 雪图分类结果为一致的面积占总面积的 96.16%. HJ-1B 卫星积雪分类图无雪而"真值"影像有雪的积 雪的漏测积雪像元数较少,占总面积的 1.79%, HJ-1B 卫星积雪图有雪而"真值"影像无雪的积雪多 测像元数占面积的 2.05%.积雪差值分布图与坡度 图具有相关性,漏测误差随坡度上升而增大,多测 误差随坡度上升有增大的趋势.由此可得,HJ-1B 卫星积雪图与"真值"影像积雪图在坡度较小地区一 致性高,多测和漏测误差较小;反之在坡度较大地 区总体误差较大,尤其是多测误差增加比较显著, 漏测误差呈现减少趋势.这是由于在坡度较小地区 地势平坦,积雪监测相对准确,在坡度较大地区受 山体阴影等因素影响,积雪监测误差增大.积雪差 值分布图与坡向图没有明显相关性,但是在南坡 (即阳坡)上,漏测误差相对较小,多测误差相对较 大;反之在北坡(即阴坡)上,漏测误差相对较大, 多测误差相对较小.

3.3 MODIS 与 HJ-1B 积雪图比较

比较 2009 年 12 月 6 日 MODIS 与 HJ-1B 卫星 积雪图(图 5),结果表明两种积雪图中积雪分布范 围基本一致.将两种积雪图分别与"真值"积雪图进 行比较,并通过分层随机采样的方式选择200个采

Fig. 4 The relationship between errors of omission and commission and slope and aspect

图 5 2009 年 12 月 6 日 MOD10A1(a)与 HJ-1B 卫星(b)积雪分类图 Fig. 5 MOD10A1 snow cover map (a) and HJ-1B satellite snow cover map (b) on Dec 6th, 2009

表 3 MODIS 逐日标准积雪分类图像和 HJ-1B 卫星积雪分类图精度比较

Table 3 Precision comparison between MOD10A1 and HJ-1B satellite snow cover maps

积雪图	漏测误差/%	多测误差/%	总精度/%	积雪精度/%	$K_{ m hat}$
MOD10A1	9.7098	7.3794	91.9146	90.2902	0.817
HJ-1B	4.1047	0.0113	97.9666	95.8953	0.911

样点,计算积雪图分类精度及 *K*_{hat} 一致性系数.比 较结果如表 3.

结果显示,以"真值"影像做参考,MODIS标 准积雪图分类总精度为 91. 91%,积雪分类精度为 90. 29%,K_{hat}系数检验值为 0. 817,两幅图一致性 较高,能有效地判别积雪信息.HJ-1B卫星积雪图 分类总精度为 97. 97%,积雪精度为 95. 90%,K_{hat} 系数检验值为 0. 911,两图一致性很高.可以看出, HJ-1B卫星积雪图分类精度明显高于 MODIS 逐日 标准积雪图 MOD10A1.相对 500m 分辨率的 MO-DIS 积雪分类图像,HJ-1B 卫星数据得到的积雪提 取结果轮廓更清晰,尤其针对山区积雪破碎化的特 点,更高的空间分辨率的 HJ-1B 数据对积雪信息的 提取更加精确,能够满足流域尺度积雪覆盖面积监 测精度的需求.

4 结论与讨论

HJ-1B 卫星数据具有空间分辨率高,重访周期 短,影像幅宽大等优点,能够满区域性尺度的积雪 面积监测.本文以 HJ-1B 卫星数据为基础,采用的 NDSI 法判别积雪,进行积雪制图的算法研究. NDSI 阈值选取是积雪判别的关键.研究表明,选 取的 NDSI 阈值越大,识别的积雪像元数越少,漏 测积雪像元数越多,多测积雪像元数越少.当 ND-SI 阈值取 0.37 时,分类总精度达到最大,为 97.96%,漏测误差和多测误差相对较小,最终选 取 NDSI≥0.37 为研究区合理阈值.但是由于实地 气象台站观测数据不足,目视解译利用 HJ-1B 卫星 CCD 30 m 空间分辨率的优势,弥补实地观测数据 的不足.

以"真值"影像为参考,比较 MODIS 与 HJ-1B 卫星积雪图精度,HJ-1B 卫星积雪图精度明显高于 MODIS 积雪图.由于 MODIS 数据与 HJ-1B 数据 的空间分辨率相差较大,因此在精度比较中存在误 差.在积雪面积大的区域,误差对结果的影响较 小,在积雪面破碎化比较严重的区域,积雪制图精 度较差,该方法在应用时会有一定的局限性.因而 研究采用总体分类精度验证和 K_{bat}一致性系数两种 方法对积雪制图进行精度比较,采用随机采样点提 高验证效率.结果表明,两种精度验证方法得到分 类结果和地面参考信息间的一致性很高,HJ-1B 卫 星积雪分类图较 MODIS 逐日积雪分类图像精度要 高,说明利用 HJ-1B 资料积雪分类算法能够满足流 域尺度的积雪监测的需要.

本文运用结合实地观测数据进行目视解译的影像为"真值",比较得到研究区 HJ 卫星积雪判别的 NDSI 阈值,对利用 HJ 卫星数据实现积雪监测具 有一定的借鉴意义.但是推荐阈值普适性仍不足, 获取更多 HJ-1B 卫星数据、同步的实测数据、时空 匹配的高分辨率影像以得到普适性的阈值有待进一 步研究.

参考文献(References):

- [1] Ault T W, Czajkowski K P, Benko T, et al. Validation of the MODIS snow product and cloud mask using student and NWS cooperative station observations in the Lower Great Lakes Region [J]. Remote Sensing of Environment, 2006, 105(4): 341-353.
- [2] Robinson D A, Dewey K F, Heim Jr R R. Global snow cover monitoring: an update[J]. Bulletin of the American Meteorological Society, 1993, 74(9): 1689-1696.
- [3] Jones H G, Pomeroy J W, Walker D A, et al. Snow Ecology: An Interdisciplinary Examination of Snow-covered Ecosystems [M]. Cambridge: Cambridge University Press, 2001: 1-264.
- [4] Wang Chenghai, Wang Zhilan, Cui Yang. Snow cover of China during the last 40 years: spatial distribution and interannual variation [J]. Journal of Glaciology and Geocryology, 2009, 31(2): 301-310. [王澄海,王芝兰,崔洋. 40 余年来中国地区季节性积雪的空间分布及年际变化特征[J]. 冰川

冻土,2009,31(2):301−310.]

- [5] Pulliainen J. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations [J]. Remote sensing of Environment, 2006, 101(2): 257-269.
- [6] Liu Xingyuan, Liang Tiangang, Guo Zhenggang. Evaluating model and approach of snow disaster effect on grassland animal husbandry—A case study in Aletai Region of Xinjiang [J]. Acta Botanica Boreali-occidentalia Sinica, 2004, 24(1): 94-99. [刘兴元,梁天刚,郭正刚. 雪灾对草地畜牧业影响的评价模型及方法研究——以新疆阿勒泰地区为例[J]. 西北植物学报, 2004, 24(1): 94-99.]
- [7] Dankers R, De Jong S M. Monitoring snow-cover dynamics in Northern Fennoscandia with SPOT VEGETATION images
 [J]. International Journal of Remote Sensing, 2004, 25(15): 2933-2949.
- [8] Hartman R K, Rost A A, Anderson D M. Operational processing of multi-source snow data [C]//Proceedings of the Western Snow Conference. Reno, NV, USA, April, 1995: 147-151.
- [9] Xiao X, Shen Z, Qin X. Assessing the potential of VEGE-TATION sensor data for mapping snow and ice cover: a Normalized Difference Snow and Ice Index [J]. International Journal of Remote Sensing, 2001, 22(13): 2479-2487.
- [10] Xiao X, Zhang Q, Boles S, et al. Mapping snow cover in the pan-Arctic zone, using multi-year (1998-2001) images from optical VEGETATION sensor [J]. International Journal of Remote Sensing, 2004, 25(24): 5731-5744.
- [11] Xiao X, Moore III B, Qin X, et al. Large-scale observations of alpine snow and ice cover in Asia: using multi-temporal VEGETATION sensor data [J]. International Journal of Remote Sensing, 2002, 23(11): 2213-2228.
- [12] Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products [J]. Remote Sensing of Environment, 2002, 83(1-2): 181-194.
- [13] Che Tao, Li Xin. Retrieval of snow depth in China by passive microwave remote sensing data and its accuracy assessment [J]. Remote Sensing Technology and Application, 2004, 19 (5): 301-306. [车涛,李新. 利用被动微波遥感数据反演我国积雪深度及其精度评价[J]. 遥感技术与应用, 2004, 19 (5): 301-306.]
- [14] Che Tao, Li Xin. Spatial distribution and temporal variation of snow water resources in China during 1993-2002[J]. Journal of Glaciology and Geocryology, 2005, 27(1): 64-67. [车涛,李新. 1993-2002年中国积雪水资源时空分布与变化特征[J]. 冰川冻土, 2005, 27(1): 64-67.]
- [15] Feng Qisheng, Zhang Xuetong, Liang Tiangang. Dynamic monitoring of snow cover based on MOD10A1 and AMSR-E in the north of Xinjiang Province, China[J]. Acta Prataculturae Sinica, 2009, 18(1): 125-133. [冯琦胜,张学通,梁天 刚. 基于 MOD10A1 和 AMSR-E 的北疆牧区积雪动态监测研 究[J]. 草业学报, 2009, 18(1): 125-133.]
- [16] Yu Hui, Feng Qisheng, Zhang Xuetong, et al. An approach for monitoring snow depth based on AMSR-E data in the pastoral area of Northern Xinjiang [J]. Acta Prataculturae Sinica, 2009, 18(4): 210-216. [于慧,冯琦胜,张学通,等. 基于 AMSR-E 信息的北疆牧区雪深遥感监测模型方法初探

±

[J]. 草业学报, 2009, **18**(4): 210-216.]

- [17] Cao Meisheng, Li Xin, Chen Xianzhang, et al. Remote Sensing of Cryosphere [M]. Beijing: Science Press, 2006: 58.
 [曹梅盛,李新,陈贤章,等.冰冻圈遥感[M].北京:科学出版社, 2006: 58.]
- [18] Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 1995, 54(2): 127-140.
- [19] Feng Xuezhi, Li Wenjun, Bai Yanchen. Research on the methods of obtaining satellite snowcover information [J]. Journal of Image and Graphics, 2000, 5A(10): 836-839.
 [冯学智,李文君,柏延臣. 积雪卫星遥感信息的提取方法探讨[J]. 中国图像图形学报, 2000, 5A(10): 836-839.]
- [20] Zheng Zhaojun, Liu Yujie, Zhang Bingchuan. Improved remote sense monitoring on snow cover of china in winter[J]. Journal of Applied Meteorological Science, 2004, 15 (Suppl.): 75-84. [郑照军,刘玉洁,张炳川. 中国地区冬季积 雪遥感监测方法改进[J]. 应用气象学报, 2004, 15(增): 75-84.]
- [21] Wang Jian. Comparison and analysis on methods of snow cover mapping by using satellite remote sensing data [J]. Remote Sensing Technology and Application, 1999, 14(4): 29 36. [王建. 卫星遥感积雪制图方法对比与分析[J]. 遥感技术与应用, 1999, 14(4): 29-36.]
- [22] Jia Fujuan, Wu Yanlin, Huang Ying, et al. Design and onorbit application of CCD camera on HJ-1A/1B satellites[J]. Spacecraft Engineering, 2009, 18(6): 37-42. [贾福娟, 吴 雁林,黄颖,等. 环境减灾-1A、1B卫星宽覆盖多光谱 CCD 相机技术[J]. 航天器工程, 2009, 18(6): 37-42.]
- [23] Liu Yinnian, Wang Jianyu, Xue Yongqi. Infrared scanner of HJ-1B satellite[J]. Spacecraft Engineering, 2009, 18(6): 50
 -56. [刘银年,王建宇,薛咏琪. 环境减灾-1B卫星红外相 机的研制[J]. 航天器工程, 2009, 18(6): 50-56.]
- [24] Liu Sanchao, Yang Siquan. Disaster reduction application of the infrared scanner (IRS) data of HJ-1B satellite[J]. Spacecraft Engineering, 2010, 19(4): 110-114. [刘三超,杨思 全.环境减灾-1B卫星红外相机数据减灾应用研究[J]. 航 天器工程, 2010, 19(4): 110-114.]
- [25] Song Zhen, Chen Xiaoling, Liu Hai, et al. Snow cover extraction based on the HJ-1A/1B satellite data[J]. Resources and Environment in the Yangtze Basin, 2011, 20(5): 553-558. [宋珍,陈晓玲,刘海,等. 基于 HJ-1A/1B 卫星遥感数 据的积雪识别方法研究[J]. 长江流域资源与环境, 2011, 20(5): 553-558.]
- [26] Dai Liyun, Che Tao. The spatio-temporal distribution of snow density and its influence factors from 1999 to 2008 in China[J]. Journal of Glaciology and Geocryology, 2010, 32 (5): 861-866. [戴礼云, 车涛. 1999-2008 年中国地区雪密度的时空分布及其影响特征[J]. 冰川冻土, 2010, 32(5): 861-866.]
- [27] Li Peiji. Dynamic characteristic of snow cover in western China[J]. Acta Geographica Sinica, 1993, 48(6): 505-515.
 [李培基.中国西部积雪变化特征[J].地理学报, 1993, 48(6): 505-515.]
- [28] Zeng Qunzhu, Yong Shipeng, Gu Zhongwei, et al. Study on Chinese Snowstorm Classification and Hazard Assessment Methods[M]//Methodology for Assessing Natural Disaster

Risk of China. Beijing: China Science and Technology Press, 1993: 87-105. [曾群柱,雍世鹏,顾钟炜,等. 中国雪灾的 分类分级和危险度评价方法的研究[M]//中国自然灾害影响 评价方法研究. 北京:中国科技出版社,1993: 87-105.]

- [29] Huang Xiaodong, Hao Xiaohua, Wang Wei, et al. Algorithms for cloud removal in MODIS daily snow products[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1118-1126. [黄晓东,郝晓华,王玮,等. MODIS 逐日积雪产品去云算法研究[J]. 冰川冻土, 2012, 34(5): 1118-1126.]
- [30] Liang T G, Huang X D, Wu C X, et al. An application of MODIS data to snow cover monitoring in a pastoral area: A case study in Northern Xinjiang, China[J]. Remote Sensing of Environment, 2008, 112(4): 1514-1526.
- [31] Huang Xiaodong, Liang Tiangang. Study on the remotely sensed monitoring method of snow disaster in pastoral area
 [J]. Pratacultural Science, 2005, 22(12): 10-16. [黄晓东, 梁天刚. 牧区雪灾遥感监测方法的研究[J]. 草业科学, 2005, 22(12): 10-16.]
- [32] Klein A G, Barnett A C. Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000 -2001 snow year [J]. Remote Sensing of Environment, 2003, 86(2): 162-176.
- [33] Wang X, Xie H, Liang T. Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China [J]. Remote Sensing of Environment, 2008, 112 (4): 1497-1513.
- [34] Zhang Xu, Tang Hong, Zhao Xiang, et al. Sub-pixel snow coverage and correlation factors analysis based on MODIS and HJ-1B data[J]. Resources and Environment in the Yangtze Basin, 2010, 19(5): 566-571. [张旭, 唐宏, 赵祥, 等. 基于 MODIS 与 HJ-1-B 数据的积雪率反演及其相关因子分析 [J]. 长江流域资源与环境, 2010, 19(5): 566-571.]
- [35] Wang Xing, Zhang Qiang, Guo Ni, et al. Method for discriminating snow in Qilian Mountain region based on MODIS data[J]. Arid Meteorology, 2007, 25(2): 29-34. [王兴, 张强, 郭铌, 等.利用 MODIS 数据判识祁连山区积雪方法研究[J]. 干旱气象, 2007, 25(2): 29-34.]
- [36] Yang Xingguo, Qin Dahe, Qin Xiang. Progress in the study of interaction between ice/snow and atmosphere [J]. Journal of Glaciology and Geocryology, 2012, 34(2): 392-402. [杨兴国,秦大河,秦翔.冰川/积雪-大气相互作用研究进展[J]. 冰川冻土, 2012, 34(2): 392-402.]
- [37] Hao Xiaohua, Wang Jian, Li Hongyi. Evaluation of the NDSI threshold value in mapping snow cover of MODIS A case study of snow in the middle Qilian Mountains [J]. Journal of Glaciology and Geocryology, 2008, 30(1): 132—138. [郝晓华,王建,李弘毅. MODIS 积雪制图中 NDSI 阈值的检验——以祁连山中部山区为例[J]. 冰川冻土, 2008, 30(1): 132—138.]
- [38] Hall D K, Foster J L, Verbyla D L, et al. Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in central Alaska[J]. Remote Sensing of Environment, 1998, 66(2): 129-137.
- [39] Huang X, Liang T, Zhang X, et al. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001-2005 snow seasons over Northern Xinjiang, China[J]. International Journal of Remote Sensing, 2011, 32 (1): 133-152.

- [40] Hao Xiaohua, Zhang Pu, Wang Jian, et al. Evaluation and comparison of MODIS and vegetation snow cover products in Northern Xinjiang, China [J]. Remote Sensing Technology and Application, 2009, 24(5): 603-610, 550. [郝晓华,张璞,王建,等. MODIS和 VEGETATION积雪产品在北疆的验证及比较[J]. 遥感技术与应用, 2009, 24(5): 603-610, 550.]
- [41] Zhang Xuetong, Huang Xiaodong, Liang Tiangang, et al. Accuracy analysis for MODIS snow data of MODI0A1 in a pastoral area in Northern Xinjiang [J]. Acta Prataculturae Sinica, 2008, 17(2): 110-117. [张学通,黄晓东,梁天刚, 等. 新疆北部地区 MODIS 积雪遥感数据 MOD10A1 的精度 分析[J]. 草业学报, 2008, 17(2): 110-117.]
- [42] Huang Xiaodong, Zhang Xuetong, Li Xia, et al. Accuracy analysis for MODIS snow products of MOD10A1 and

MOD10A2 in Northern Xinjiang area [J]. Journal of Glaciology and Geocryology, 2007, **29**(5): 722-729. [黄晓东,张 学通,李霞,等. 北疆牧区 MODIS 积雪产品 MOD10A1 和 MOD10A2 的精度分析与评价[J]. 冰川冻土, 2007, **29**(5): 722-729.]

- [43] Rosenfield G H, Fitzpatrick-Lins K. A coefficient of agreement as a measure of thematic classification accuracy [J]. Photogrammetric Engineering & Remote Sensing, 1986, 52 (2): 223-227.
- [44] Congalton R G. A review of assessing the accuracy of classifications of remotely sensed data [J]. Remote Sensing of Environment, 1991, 37(1): 35-46.
- [45] Landis J R, Koch G G. The measurement of observer agreement for categorical data [J]. Biometrics, 1977, 33: 159-174.

Snow Cover Mapping Algorithm Based on HJ-1B Satellite Data

HE Yong-qi¹, HUANG Xiao-dong¹, FANG Jin¹, WANG Wei¹, HAO Xiao-hua², LIANG Tian-gang¹

(1. State Key Laboratory of Grassland Agro-ecology System, College of Pastoral Agriculture Science and Technology,

Lanzhou University, Lanzhou Gansu 730020, China; 2. Cold and Arid Regions Environmental and Engineering

Research Institute, Chinese Academy of Sciences, Lanzhou Gansu 730000, China)

Abstract: Snow cover is an important factor affecting climate. Using the HJ satellite with higher spatial and temporal resolution for snow cover mapping has a great significance to promoting China's own remote sensing satellites in the field of snow monitoring. In this paper, the normalized difference snow index (NDSI) method based on HJ-1B satellite data is used to study the snow cover mapping algorithm in Darlag County, Qinghai Province. The accuracies of MODIS daily snow cover map and the HJ-1B snow cover map are compared. It is found that: 1) the suitable NDSI threshold of HJ-1B snow cover mapping algorithm is 0.37 and the total classification accuracy is 97. 97%. 2) Compared with the MODIS daily snow cover map, the HJ-1B snow cover map has higher coherence with " true value" snow cover image with K_{hat} coefficient of 0. 911, more than that of MODIS daily snow cover map, 0. 817. The accuracy of snow cover mapping algorithm based on HJ-1B is established in this study, which is reliable for snow cover dynamic monitoring in the study area. The HJ-1B with higher spatial and temporal resolution can improve the accuracy of snow cover area monitoring. However, the terrain is an important factor for snow cover monitoring accuracy when using HJ-1B data. The snow classification error increases with slope, especially the commission error.

Key words: HJ-1B; NDSI; snow cover mapping; Darlag County